Researchers Develop Methods to Detect Hacking of 3D Printers

A team of researchers from Rutgers University-New Brunswick and the Georgia Institute of Technology has developed three strategies for determining if 3D printers have been hacked.

"They will be attractive targets because 3D-printed objects and parts are used in critical infrastructures around the world, and cyberattacks may cause failures in health care, transportation, robotics, aviation and space," said Saman Aliari Zonouz, coauthor of the study and associate professor in the electrical and computer engineering department at Rutgers University-New Brunswick, in a report on the research.

Hackers could conceivably insert tiny defects in printed objects, too small to detect visually, but that nevertheless compromise the integrity of the piece with potentially disastrous consequences. Many organizations outsource their 3D printing needs rather than buying expensive printers themselves, which centralizes and, perhaps, exacerbates the threat.

"The results could be devastating and you would have no way of tracing where the problem came from," said Mehdi Javanmard, study coauthor and assistant professor in the electrical and computer engineering department at Rutgers-New Bruswick, in a prepared satement.

"While anti-hacking software is essential, it's never 100 percent safe against cyberattacks," the university research news organization Futurity recently reported. "So the researchers looked at the physical aspects of 3D printers."

The team eventually developed three ways to detect tampering, either during or after printing an object:

  • Compare the sound of the printer as it operates to a recording of a printer creating a print known to be correct;
  • Compare the physical movement of the printer's parts as it works to a the movements of a printer as it produces a correct print; and
  • Mix gold nanorods with the printing filament, then use Raman spectroscopy and computed tomography to make sure the nanorods are dispersed throughout the object as expected.

In the future, the group plans to find new ways to attack the printers so they can develop new defenses, transfer their methods to industry and refine the techniques they've already developed.

"These 3D printed components will be going into people, aircraft and critical infrastructure systems," said Raheem Beyah, a professor and associate chair in Georgia Tech's School of Electrical and Computer Engineering. "Malicious software installed in the printer or control computer could compromise the production process. We need to make sure that these components are produced to specification and not affected by malicious actors or unscrupulous producers."

The full study is available as a PDF here.

About the Author

Joshua Bolkan is contributing editor for Campus Technology, THE Journal and STEAM Universe. He can be reached at [email protected].

Featured

  •  classroom scene with students gathered around a laptop showing a virtual tour interface

    Discovery Education Announces Spring Lineup of Free Virtual Field Trips

    This Spring, Discovery Education is collaborating with partners such as Warner Bros., DC Comics, National Science Foundation, NBA, and more to present a series of free virtual field trips for K-12 students.

  • glowing padlock shape integrated into a network of interconnected neon-blue lines and digital nodes, set against a soft, blurred geometric background

    3 in 4 Administrators Expect a Security Incident to Impact Their School This Year

    In an annual survey from education identity platform Clever, 74% of administrators admitted that they believe a security incident is likely to impact their school system in the coming year. That's up from 71% who said the same last year.

  • horizontal stack of U.S. dollar bills breaking in half

    ED Abruptly Cancels ESSER Funding Extensions

    The Department of Education has moved to close the door on COVID relief funding for schools, declaring that "extending deadlines for COVID-related grants, which are in fact taxpayer funds, years after the COVID pandemic ended is not consistent with the Department’s priorities and thus not a worthwhile exercise of its discretion."

  • pattern of icons for math and reading, including a pi symbol, calculator, and open book

    HMH Launches Personalized Path Solution

    Adaptive learning company HMH has introduced HMH Personalized Path, a K-8 ELA and math product that combines intervention curriculum, adaptive practice, and assessment for students of all achievement levels.