Cloud Security Alliance Issues Recommendations on Using AI for 'Offensive Security'

A new report examines how advanced AI can help perform adversarial testing with red/black teams and provides recommendations for organizations to do just that.

Published on Aug. 6 by Cloud Security Alliance (CSA), the "Using AI for Offensive Security" paper examines AI's integration into three offensive cybersecurity approaches:

  • Vulnerability assessment: can be used for the automated identification of weaknesses using scanners.
  • Penetration testing: can be used to simulate cyberattacks in order to identify and exploit vulnerabilities.
  • Red teaming: can be used to simulate a complex, multi-stage attack by a determined adversary, often to test an organization's detection and response capabilities.

Related practices are shown in this graphic:

Offensive Security Testing Practices
[Click on image for larger view.] Offensive Security Testing Practices (source: CSA).

CSA notes actual practices can differ based on various factors such as organizational maturity and risk tolerance.

A primary focus of the paper is the shift in cybersecurity caused by advanced AI such as large language models (LLMs) that power generative AI.

"This shift redefines AI from a narrow use case to a versatile and powerful general-purpose technology," said the paper, which details current security challenges and showcases AI's capabilities across five security phases:

  • Reconnaissance - Reconnaissance represents the initial phase in any offensive security strategy, aiming to gather extensive data regarding the target's systems, networks, and organizational structure.
  • Scanning - Scanning entails systematically examining identified systems to uncover critical details such as live hosts, open ports, running services, and the technologies employed, e.g., through fingerprinting to identify vulnerabilities.
  • Vulnerability Analysis - Vulnerability analysis further identifies and prioritizes potential security weaknesses within systems, software, network configurations, and applications.
  • Exploitation - Exploitation involves actively exploiting identified vulnerabilities to gain unauthorized access or escalate privileges within a system.
  • Reporting - The reporting phase concludes the offensive security engagement by systematically compiling all findings into a detailed report.

"By adopting these AI use cases, security teams and their organizations can significantly enhance their defensive capabilities and secure a competitive edge in cybersecurity," the paper said.

The paper examines current challenges and limitations of offensive security, such as expanding attack surfaces, advanced threats and so on, and delves deeply into LLMs and advanced AI in the form of autonomous agents.

"An agent begins by breaking down the user request into actionable and prioritized plans (Planning). It then reasons with available information to choose appropriate tools or next steps (Reasoning). The LLM cannot execute tools, but attached systems execute the tool correspondingly (Execution) and collect the tool outputs. Then, the LLM interprets the tool output (Analysis) to decide on the next steps used to update the plan. This iterative process enables the agent to continue working cyclically until the user's request is resolved," the paper states. That's illustrated with this graphic:

AI Agent Phases
[Click on image for larger view.] AI Agent Phases (source: CSA).

Other topics include:

As far as what organizations can do to capitalize on advanced AI for offensive security, CSA provides these recommendations:

  • AI Integration: Incorporate AI to automate tasks and augment human capabilities. Leverage AI for data analysis, tool orchestration, generating actionable insights and building autonomous systems where applicable. Adopt AI technologies in offensive security to stay ahead of evolving threats.
  • Human Oversight: LLM-powered technologies are unpredictable, can hallucinate, and cause errors. Maintain human oversight to validate AI outputs, improve quality, and ensure technical advantage.
  • Governance, Risk, and Compliance (GRC): Implement robust GRC frameworks and controls to ensure safe, secure, and ethical AI use.

"Offensive security must evolve with AI capabilities," CSA said in conclusion. "By adopting AI, training teams on its potential and risks, and fostering a culture of continuous improvement, organizations can significantly enhance their defensive capabilities and secure a competitive edge in cybersecurity."

For the full report, visit the CSA site here (registration required).

Featured

  • Stylized illustration of an AI microchip connected to a laptop, server rack, and monitor with a chart

    HPE and Nvidia Expand AI Infrastructure Partnership

    Hewlett Packard Enterprise and Nvidia have announced an expanded partnership to accelerate enterprise artificial intelligence adoption through new modular infrastructure and turnkey AI platform offerings.

  • shield with an AI microchip emblem hovering above stacks of gold coins

    Report: AI Security Spend Surges While Traditional Security Budgets Shrink

    A new report from global cybersecurity company Thales reveals that while enterprises are pouring resources into AI-specific protections, only 8% are encrypting the majority of their sensitive cloud data — leaving critical assets exposed even as AI-driven threats escalate and traditional security budgets shrink.

  • digital learning resources including a document, video tutorial, quiz checklist, pie chart, and AI cloud icon

    Quizizz Rebrands as Wayground, Announces New AI Features

    Learning platform Quizizz has become Wayground, in a rebranding meant to reflect "the platform's evolution from a quiz tool into a more versatile supplemental learning platform that's supported by AI," according to a news announcement.

  • teen studying with smartphone and laptop

    OpenAI Developing Teen Version of ChatGPT with Parental Controls

    OpenAI has announced it is developing a separate version of ChatGPT for teenagers and will use an age-prediction system to steer users under 18 away from the standard product, as U.S. lawmakers and regulators intensify scrutiny of chatbot risks to minors.