University Faculty Find Many Uses for Mathematics Software

Beginning in 1989, a number of Vanderbilt University faculty began using Mathematica software in mathematics as well as six other disciplines. Courses were actively modified to take advantage of the software. Mathematica, a product of Wolfram Research, Inc., located in Champaign, Ill., manipulates mathematical expressions symbolically. For example, it solves systems of equations and allows expressions to be plotted in three-dimensional color with animation. The program also enables faculty to develop "notebooks" of tests, mathematical expressions and graphics to create an electronic reference book on a given topic. Several Vanderbilt professors have developed notebooks covering the entirety of their respective courses; in effect, they have written full-length electronic textbooks. Students may interact with the notebooks -- read explanations, manipulate values, plot functions and explore the various mathematical relationships -- by using just a few commands. Productivity Gains The productivity gains from using Mathematica for mathematics are thought to be substantially greater than gains achieved from using word processors for writing. For this reason the school's administrators expect an increasing number of faculty and students to use the new tools for mathematics. However, having software that can take an expression and return its derivative d'esn't necessarily help a novice understand what a derivative is. In the hands of a thoughtful teacher, though, Mathematica illustrates the interaction between numbers, mathematical expressions and graphics; with it students gain deeper insight than they might from conventional instruction. Moreover, students undertake projects that engage their creativity from the beginning of their collegiate mathematics careers. Instruction, then, places less emphasis on drill-and-practice in manipulating expressions and more emphasis on problem-design and solution strategies. Implementations Professor Philip Crooke has pioneered instructional efforts with Mathematica since 1989, and he has more classroom experience with the software than anyone else at Vanderbilt. He candidly observes that the most difficult hurdle for ordinary (rather than honors) mathematics students is introductory calculus. Combinations of math and computer phobia, and even poor keyboard skills, can cause students to be overwhelmed. Therefore, Crooke begins his course with a week or so of instruction on the computer and the core syntax of Mathematica. Vanderbilt's Computer Center offers a short workshop at the beginning of each semester that presents the basics of Mathematica, and Crooke encourages his students to attend. He says that students who take the workshop learn more quickly once they have mastered the computer-based tools. Crooke assigns one project in which students must find an algorithm for landing an airplane; it results in a polynomial that is easily plotted in Mathematica. Crooke also assigns projects involving the volumes of objects of rotation; these produce results that are both mathematically and visually interesting. As another example, Robley Williams, professor of Molecular Biology, teaches Biomolecular Interactions, which instructs seniors and beginning graduate students on the energies and speeds with which biological molecules bind to each other. Williams used Mathematica to write 35 class notebooks that integrate lecture material and exercises. Students learn a defined part of Mathematica and then make use of it to derive and graph mathematical relationships as well as to illustrate biological phenomena like cooperativity in the binding of repressor molecules to DNA. Spanning the Curriculum In sum, Vanderbilt faculty are making significant and creative pedagogical uses of Mathematica. The university's efforts are part of a national "technology in the teaching of mathematics" movement and are unique because they span a wide spectrum of the curriculum, well beyond the "calculus reform" movement. Many faculty find the software useful in research as well. In the classroom, Mathematica demonstrations enable instructors to show more interesting phenomena. But most importantly, students use mathematics to understand more realistic problems. Many of the faculty say they would not want to teach their courses without these tools. Knowledge of Mathematica gives students quantitative power that extends outside the classroom and lasts after the course is over.

Featured

  • students using digital devices, surrounded by abstract AI motifs and soft geometric design

    Ed Tech Startup Kira Launches AI-Native Learning Platform

    A new K-12 learning platform aims to bring personalized education to every student. Kira, one of the latest ed tech ventures from Andrew Ng, former director of Stanford's AI Lab and co-founder of Coursera and DeepLearning.AI, "integrates artificial intelligence directly into every educational workflow — from lesson planning and instruction to grading, intervention, and reporting," according to a news announcement.

  • toolbox featuring a circuit-like AI symbol and containing a screwdriver, wrench, and hammer

    Microsoft Launches AI Tools for Educators

    Microsoft has introduced a variety of AI tools aimed at helping educators develop personalized learning experiences for their students, create content more efficiently, and increase student engagement.

  • laptop displaying a red padlock icon sits on a wooden desk with a digital network interface background

    Reports Point to Domain Controllers as Prime Ransomware Targets

    A recent report from Microsoft reinforces warns of the critical role Active Directory (AD) domain controllers play in large-scale ransomware attacks, aligning with U.S. government advisories on the persistent threat of AD compromise.

  • Two hands shaking in the center with subtle technology icons, graphs, binary code, and a padlock in the dark blue background

    Two Areas for K-12 Schools to Assess for When to Work with a Managed Services Provider

    The complexity of today’s IT network infrastructure and increased cybersecurity risk are quickly moving beyond many school districts’ ability to manage on their own. But a new technology model, a partnership with a managed services provider, offers a way forward for schools to overcome these challenges.